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ABSTRACT

Advances in Virtual Reality (VR) Systems, Intelligent Tutoring Systems and Agent Te-
chnology make it possible to design and develop Virtual Training Environments, where the
trainees can immerse themselves and interact directly with the learning domain. This paper
presents the Virtual Reality-MFG formal model for the specification of interaction and the
design of Virtual Reality Agent-based Training Applications. VR-MFG gives the interaction
designer the capability to apply user-centered design and adopt alternatively a task-based or
a goal-oriented approach, for the design of a specific Virtual Training Environment (VE).
Moreover, allows the designer to split the design effort for any VR Training Environment
among a number of multiple micro-worlds that constitute the entire application. Finally, as a
case study of VR-MFG application, the interaction aspects of DrIVE virtual environment are
specified.

INTRODUCTION

Virtual Reality (VR) applications tend to unify the application program and its
user interface. This means that the user interface is transparent and is not distingui-
shed from the “pure” application, as it happens in conventional programs. Virtual
Reality uses techniques in order to immerse the user into a computer generated
environment where natural behavior is the interaction paradigm.

Into a Virtual Environment (VE) the application functionality and the application
interface are not visually or physically separated, but only conceptually. The user
interfaces of conventional application programs (even those with Graphical User
Interfaces) serve as a representation of that functionality, and are constructed in
order to tell the people what the program can do [5].

Moreover, the purpose of VR applications is to provide the user with the capa-
bility to perceive with more natural ways the information produced by an applica-
tion program and interact with complex data. This means that the user’s goals and
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intentions are translated not to abstract actions (e.g. click a button, roll up/down a
slider, etc.) but to more physical movements, directly onto the elements of the VE.
This imposes on VE developers the need to provide the user with a unambiguous
representation of the goals that must be accomplished and tasks that must be carried
out inside the VE.

Every user’s goal and intention affect one or more specific objects in an appli-
cation program: e.g. a database which has to be modified, a document which has to
be deleted, a site on the web that must be accessed, or even better a learning unit
that must be experienced by the user into an educational program. But, at the same
time a problem arises: what are the appropriate controls and widgets that must be
used by the user in order to accomplish the desired tasks in a GUI environment?

Concerning VEs, this problem is transposed on how to interact with the VE's
objects that are also, the subject of the user’s goals and intentions. The user has not
to worry about specific controls that exist or not in the environment but has to
concentrate solely on his specific goals.

In the area of Distributed Artificial Intelligence (DAI) and Intelligent Agents, a
lot of research has been presented on models based on formal languages and on
architectures which are based on these models. Most of these modeling approaches
emphasize on the properties, the classification, the social behavior, the goals, the
tasks, the actions and the communication of agents and include mostly formal
languages (e.g. KQML, April), algebra of actors and languages based on temporal
logic [7], [1], [13], [16], [18], [24]. In addition, Artificial Intelligence issues are
involved more and more in VR applications, introducing their own constraints that
are related to the interaction aspects of the VR application.

VEs for training [14], especially those combined with “real world” simulations
seem to be one of the new ambitious trends on the domain of Computer Assisted
Instruction (CAI). Computer generated virtual agents may exist as autonomous
objects, with which users may interact into a Virtual Training Environment (VTE).
Functions that are common to intelligent tutoring systems (ITSs) (e.g. learner mo-
deling, coaching) are assigned to individual intelligent animated agents, rather than
being part of the environment as a whole. Also, the specification of tutor-learner
interaction sessions leads to the need of establishing techniques for specifying mo-
dels of instruction.

The domain of VR systems into which interactive intelligent agents with pedago-
gical capabilities are incorporated, is the current trend in the area of Virtual Trai-
ning Environments. The approaches that have been proposed focus: on the develop-
ment of automated agents with pedagogical capabilities that can participate in trai-
ning exercises [23], [11], and on the modeling of the computer-generated tutors pe-
dagogical aspects [10] (e.g. plan recognition and execution, demonstration and
explanation cdpabilities). Although these approaches have led to efficient systems,
it will be extremely useful for the interaction designer to take advantage of an inter-
action specification model which is adapted to the needs of three-dimensional
agent-based VTEs, incorporating features that capture both the user-system (exter-
nal communication) and the agent interaction (internal communication) aspects,
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and the pedagogical issues of the produced VR systems, as well.

Virtual Reality Multi Flow Graphs (VR-MFG) is a specification model which is
defined as an extension of IMFG [12] and can be used for the specification and
design of Virtual Reality Agent-based Training Applications. It incorporates the
cognitive features of IMFG, and the powerful analysis techniques of Petri Nets. The
VR-MFG enriched interaction model is derived from the IMFG and adopts the
basic formalism of its predecessor. Virtual Environments due to the three-dimen-
sional graphics they provide, are the ideal platform for representation of the ele-
ments used by IMFG (boxes, circles, arrows etc.) and the visualization of the con-
cepts these graphical elements reflect. On the other hand, the graphical notation of
VR-MFG (mostly adopted by IMFG) makes the specific model one of the most suj-
table, among other similar approaches [9] for interaction specification in VEs, since
the three-dimensional graphs provide a high degree of supervision as shown in
[26]. Since this work is in progress, the pedagogical characteristics of the VR-MFG
model are not exhaustively presented in this paper, nevertheless the way those pe-
dagogical features are represented is described in the next section.

In section two, the description and the analytical definition of the VR-MFG mo-
del is presented, along with a short discussion about the application of the model
and the extended design framework into which the VR-MFG belongs. Section three
is a case study of VR-MFG application, and includes the interaction specification
graphs for DrIVE virtual environment. The paper concludes with relevant further
work on the domain.

VIRTUAL REALITY — MFG DESCRIPTION

As a Virtual Environment consists of interactive (active) and non-interactive
(passive) virtual elements (e.g. objects, concepts, abstractions, information), the
VR-MFG which models this VE consists of active (actors) and passive (links)
components. Although there is a close relation between the VE’s elements and the
VR-MFG components, there is an indirect correspondence between them. An active
VR-MFG component does not refer directly to an interactive element of the VE but
to the task, goal or high and lower level action into which this element is involved.

The correspondence between a passive VR-MFG component and a non-inter-
active VE’s element, is analogous, since, a passive VR-MFG component refers to
the visualization of the different information flows that occur in a Virtual Reality
interactive application.

As proposed in AVIARY [20] architecture, everything that lies inside a Virtual
Environment is treated as an object. Then each single object which is presented to
the user is an artifact, and objects that cause the artifacts are called demons [19]. In
VR-MFG, active and passive components are used in order to describe these
demons and artifacts respectively. In addition, the data or/and control information
that flows into the VE are represented by data or/and control structures into VR-
MFG.
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1. Definition of the model
Analytically, the components of Virtual Reality-MFG model are:

* actors (that correspond to the actions, tasks or goals of the VE’s elements),
which model the interactive responses that must be performed by the agents that
participate in a VE, as a consequence of the occurrence of an event. Events may
be caused by other agents, since the user, the objects of the VE and the VE itself,
are all agents that act into a common space. Actors are always preceded and
followed by,

e links (that correspond to the non-interactive VE’s elements), which describe the
situation that precedes and that results from a user action, through the storage of,

* tokens (that correspond to the data or/and control information that exist into the
VE), which represent abstract data or control structures that are produced or
consumed by the VR-MFG components.

All the actors that are ready-to-fire (that is, which may fire after the next event)
are maintained in the actor-ready list. Moreover, an actor can be viewed as an
integral goal, which can be achieved by the satisfaction of a number of sub-goals.

Actors are described by:

° aname,
* aset of input and a set of output links, which precede and follow the actor,

* aset of firing rules, which represent the actor’s behavior, since the left hand si-
de forms the pre-conditions (that are kept in its input links) and the right hand si-
de includes the post-conditions (that are kept in its output links),

* a method, which represents the lower leve] actor’s functionality, that is, how the
actor handles its input data and produces its output ones.

* appe. There are four types of actors, namely:

1. Action actors: they represent a single response which is performed by a VE
agent. These actors do not have any VR-MFG represented internal structure. The
rules part of each action actor defines how this single task is implemented. VR-
MFG does not give a clear description of the task to be done, but specifies the
goal decomposition (or the task analysis) in order for the goal to be achieved (or
the task to be completed). Action actors define the way the VE’s agents interface
with the domain-dependent functional core of the application, via single inter-
active responses.

2. Context actors: their internal structure represents the task or goal decomposition
into sub-tasks or sub-goals, via a number of other context or action actors,

3. Guide actors: similar to Library IMFG actors, are used to represent the way the
task or goal decomposition is achieved. AND and OR decomposition are provi-
ded, since these two fundamental actions can model any task or goal decompo-
sition.
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4. Virtual actors: used for a graphical grouping of actors, without any other signifi-
cance, but may serve as reusable components during design process.

Virtual Reality applications are characterized mostly by their interactivity requi-
rements that must be fulfilled in order to provide the user with the capability to per-
ceive the virtual environment, with more natural ways. But, as shown and statisti-
cally measured in [15], most users focused on what there was to do, and what is
already done, inside the virtual environment and not only on how to do it. The
contribution of VR-MFG into this direction is that the action actors can be used
either to describe the computational capabilities of the application (e.g. what the
VE’s agents can do, including the user, as well), or to link VR-MFG model with
another specification model that describes the lower-level computational tasks that
constitute the application (e.g. how VE’s agents communicate with the external
environment-devices or with each-other, or which exact way is used by the user-
student trying to interact with the learning domain into a Virtual Training Environ-
ment).

Links are described by:

e aname,

* a et of input and a set of output actors that produce and consume the tokens
stored in this link,

* amethod, which is performed upon the link’s tokens, and

* a{fype. The definition of link types distinguishes among the type of tokens they
store. Each link type stores a specific kind of tokens. This allows the designer to
model the different types of information (e.g. data, control) that exist inside a
VR Application, and permits system design from alternative perspectives.

VR-MFG links are typed so that the different information flows that occur in a
VR application are distinguished and each information flow can have its own visua-
lization.

The seven types of links, are:

1. Event links: describe the events that are caused by the agents that participate in
the VR application. Users are also treated as agents in VR-MFG, so event links
can be used in order to describe any external or internal communication of
events. In VEs, events may be composite, having their own existence, unlike ap-
plications that use a 2D GUI, where events can be caused by simple actions (e.g.
click, scroll, key-press, etc.). For example, event generation process in nu-
merous cases [4] (e.g. where gesture interaction methods are used), includes an
internal structure. Moreover, this is recommended by a number of diverse inter-
action methods which have already proposed in [3], [8], [22]. VR-MFG provides
event links decomposition, so the designer can explicitly specify how events can
be caused, representing the internal structure of event links.

2. Perception links: a special kind of event links, which are used in order to repre-
sent system responses that are directed to the input-output devices, in order to
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provide the user of the VR application with the capability to perceive with natu-
ral ways of special VE responses (e.g. haptic feedback, position orientation feed-
back activities etc.). These are event links with internal structure, that represent
any cognitive perceptual state of the user agent and the tokens they contain are
produced and consumed exclusively by the user (or the user agent). Perception
links are designed in order to make VR-MFG model adaptive to any kind of
interaction technique (e.g. direct or indirect manipulation of VR objects, immer-
sion techniques where input is entered via sensors and output is processed by
advanced hardware interface devices) and permit platform-independent inter-
action specification.

3. Condition links: represent the global or local conditions that precede and result
from any agent action that takes place into the VE. Consequently represent prio-
rity of execution and availability of actors. Moreover condition links describe
whether any of the VE agents is ready to process another agent’s action, that will
lead to the achievement of a subgoal, or to the completion of a specific task, into
the VE.

4. Data links: represent the data or control flow, into the VR application. More-
over, they represent the content of messages that pass between the participating
agents,

5. Context links: represent the context into which, a number of interactions are per-
formed. Consequently, context links describe the context to which a specific
goal or task belongs and indicate whether a major goal is decomposed into sub-
goals, so a new “session” starts for the accomplishment of this sub-goal. More-
over, context links contribute to the representation of the memory and the know-
ledge issues which are of major importance for any VR agent-based Application.
Every actor that belongs inside a specific context knows the goal of all the other
actors that belong in the same context and the VR-MFG can model long-term
memory by maintaining the actor ready list and the content of context-out links,
since the short-term memory is represented directly inside the current context.

6. Communication links: model the effects that the separate micro-worlds existing
inside the entire VR application may have on one another, since there exists a
separate VR-MFG for each virtual micro-world.

1. Learning links: represent the learning issues which rule the training interactions
and the student-trainee dialogue. These links are not completely integrated into
VR-MFG yet, but are going to be founded upon alternative instructional strate-
gies and provide representation of autonomous agents with instructional capabi-
lities [17].

2. Application of the model

VR-MFG, being graphical tool, has its special symbolism which is shown in
Figure 1.
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Figure 1: VR-MFG symbolism.

Any VR Application can be viewed as a collection of different VEs (micro-
worlds) that constitute the entire application. These multiple worlds may be concur-
rently active, just like a conventional GUI application, where several windows are
open, running different applications but only one can have the user focus. The aim
of VR-MFG is not to specify the concurrency for the entire application, but to split
the design effort for concurrency, among these multiple worlds.
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Figure 2: Snapshot of the common virtual workspace where abstract objects (the
components of the VR-MFG) are associated with “actual” objects of the target virtual
environment and appropriate agent templates with instructional capabilities are applied.
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VR-MFG is used as the underlying model of the Interaction Specification Work-
space (ISW) architecture, which is under construction from the authors of this pa-
per. The designer is provided with the capability to associate the abstract objects
(the components of the VR-MFG) with “actual” objects of the target virtual envi-
ronment kept in the object database, and apply a number of agent templates, inside
a common virtual workspace (Figure 3).

A CASE STUDY OF VR-MFG APPLICATION

DrIVE [6] is a virtual training environment intended to train novice car-drivers
in common driving situations. It is based on desktop VR, with a minimum of
requirements in processing power and data storage. DrIVE consists of three main
parts: driving lessons, tests for the trainee, and free driving with on-line guidance.

The aim of the application is to transfer experience on the domain of driving be-
havior, which can be done using the synthetic experience that virtual environments
are able to provide rather than actual practicing which involves obvious dangers.
To this end, feedback from users of this first prototype is extremely encouraging
and several ideas for its improvement have been suggested to the design team.

DrIVE has been developed with Superscape VRT software [25]. The physical
properties were attached to the objects which constitute the DrIVE environment
using the appropriate editors.

In the first system version the interactive properties were extracted informally
and code was assigned incrementally and directly into the objects using SCL (a C-
like programming language with event driven code execution) in order to imple-
ment these properties. In the second system version, the third part of free driving
has been designed afresh, using VR-MFG for the interaction design, before any co-
de was assigned to the objects. Then, the implementation of this part was realized,
using this formal specification. The benefit was twofold: evaluation of VR-MFG
and a substantiated system.

The Crossroads example refers to the third part of the application where the
user-trainee is the driver of one of the virtual environment’s cars. His car reaches
the crossroads, and two other cars are coming from the opposite directions.

The user plan-goal decomposition approach will be applied in order to specify
the way the user must pass the crossroads safely, which is the main user-goal. This
goal is directly decomposed in three sub-goals: Stop the car before the crossroads,
Check and give priorities, and Pass.

Three representative graphs will be presented, one for the representation of the
overall goal (Cross-Goal) and the other for the representation of the Stop-subgoal,
and one for the Hold action event link generation. In Figure 3 the overall goal is
decomposed into the three sub-goals, using the AND guide actor (represented with
a cylinder which includes all the other VR-MFG components).

The Stop action event link (represents the user actions in order to stop the car)
and the Stop-subgoal context input link (shows that the user intents to stop the car)
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Figure 3: The Cross-Goal represents the user-intention, and the Cross User action the
actions he must perform to achieve this goal. Inside this AND Guide actor, there exist the
STOP () and the CHECK () context actors, and the PASS !/ action actor.

form the STOP () context actor set of input links. Also, the stopped logical condi-
tion link (shows that the car actually stopped) and Stop-subgoalOK context link
(the existence of a token indicates that the stop the car subgoal is being satisfied)
form its set of output links.

The stopped condition is then checked by the CHECK () context actor which
can be further decomposed in order to fulfill the checkOK condition, permitting
(along with Go action) the PASS !/ action actor to fire.

In Figure 4 the STOP () context actor is decomposed. STOP () context actor
includes the REACH VIEW () context actor and the USE BRAKES !/ action actor.
The user actions in order to drive the car in a position that gives him an appropriate
view of the crossroads, are represented by the Go event link. The actor REACH
VIEW () fires and a token is produced in the viewOK condition. This token is con-
sumed by the USE BRAKES !! action actor, if there is a token in the Hold action
event link, also. Then a token is produced in the shakeFeedback perception link
(which can be used in order to provide the user with real feedback through an
advanced hardware interface device, e.g. a data-glove or a cyber-data-chair), the
stopped condition link and in the Stop-subgoalOK context link. Five more graphs,
with almost the same complexity with those presented, are enough in order to
complete the entire interaction specification and design for the Crossroads
example.
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Figure 4: The STOP () context actor set of input and output links are the same with these
presented inside the AND Guide actor of the previous figure. STOP () includes the REACH
VIEW () context actor and the USE BRAKES !" action actor. The condition viewOK that
exist as an output link of REACH () actor and as an input link of USE BRAKES I/ is
responsible for the preservation of the correct interaction sequence.

VR-MFG provides decomposition capabilities for the event links. This feature is
applied for Hold action event link. The user has two alternative ways to generate
this event: either by using a pointing device (e.g. mouse, data-glove) or directly
with the keyboard. This is represented using OR decomposition (the horizontal cy-
linder for the OR Guide actor) and by the two action actors that exist inside this
Guide actor: STOP INCREMENTALLY !/ and STOP IMMEDIATELLY !!. The fi-
ring of at least one action actor, produces a token to the velocityZero condition link,
so the Hold action event is completely specified.
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Figure 5: The Hold action is decomposed into two action actors:
STOP INCREMENTALLY ! and STOP IMMEDIATELLY !!, using OR Guide actor,
providing the designer with the capability to specify the interaction style that will be used in
order to reduce the car’s velocity down to zero.

CONCLUSIONS

Virtual Reality-MFG is an IMFG-based specification model for the specification
and design of Virtual Reality Agent-based Training Applications which incorpora-
tes the cognitive features of its predecessor, the powerful analysis techniques of Pe-
tri Nets, and features found in various VR interaction techniques and multi-agent
paradigms [2], [21].

VR-MFG allows the designer to split the design effort for any VR training envi-
ronment, among a number of multiple micro-worlds that constitute the entire appli-
cation, and to specify the different flows of data and control, inside the VR appli-
cation. VR-MFG gives the interaction designer the capability to apply user-centered
design and adopt alternatively a task-based or a goal-oriented approach, for the de-
sign of a specific VE. The contents of the actor-ready list, along with conditions
enables the control of the global VR application state.

The VR-MFG graphs presented in this paper describe the interaction between the
user and the system for a crossroads situation inside the DrIVE training application.
Future development includes the incorporation of interaction styles that are com-
mon to intelligent tutoring systems which can be assigned to individual intelligent
animated agents, rather than being part of the environment as a whole.

Moreover, VR-MFG is application and domain independent, and can be used as
an underlying model for the specification and design of VR systems that require
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“true” immersion via the perception links and the link decomposition which are
provided. VR-MFG is implemented in the framework of the Interaction Specifica-
tion Workspace (ISW) architecture, as its underlying interaction specification and
design model, enabling fast analysis and prototyping of Virtual Reality Agent-
based Training Environments.
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